

liteECO® BASE series

Linear actuators for short stroke movements up to 115 mm stroke and 750 N force (static) without integrated motion controller

liteECO® BASE linear actuators

LINEAR TELESCOPABLE ELECTROMECHANICAL CONCEPT

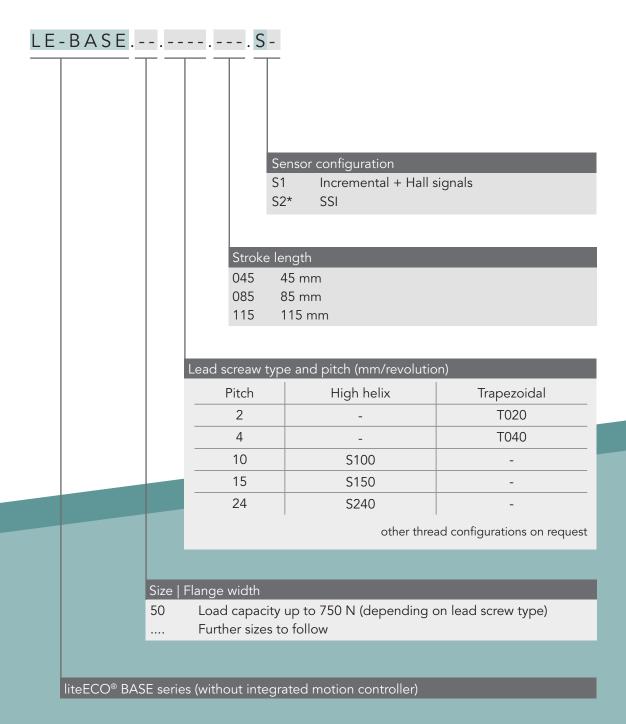
Most compact pneumatic alternative for short stroke movements

SMELA liteECO® series are the most compact electromechanical alternative to pneumatic short-stroke cylinders due to their patented telescopic concept of motor and mechanics. This makes them ideal for linear movements often required in production lines, machine tools or packaging systems.

A servo motor incl. positioning sensor enables the movement of simple to complex profiles: for fixing, adjusting, locking and following any motion profile. The highly efficient motor not only saves up to 90 % of the energy compared to pneumatic systems. Together with the smart arrangement of the mechanics, it saves up to 80 % of installation space compared to existing electrical solutions. In addition, the liteECO® series offers the possibility of a simple refurbishment. Replacing worn mechanics is very easy and helps the drives to achieve several life cycles: sustainable, cost- and resource-saving.

The LE-BASE actuators integrate many of the advantages of electric actuators and complement them with essential features for demanding industrial requirements. In addition to sealing to protection class IP65, rotatable circular connectors of size M15 with a self-locking quick-release system have been integrated. The maximum stroke is scalable in steps of 45, 85 and 115 millimetres, whereby any positioning within the maximum stroke is possible. A centering collar on the flange and the option of mounting swivel and adapter flanges on the front and rear of the actuator have been provided for mounting and alignment in customer applications.

Advantages


High power and dynamics in a compact design
High utilization of the installation length for the stroke
Up to 90 % energy savings compared to pneumatics
Up to 80 % installation space savings compared to electrical alternatives

Features

Configurable stroke lengths
Integrated, high-resolution encoder system
Controllable with various motion controllers
Robust rotatable hybrid connector for power and sensor signals
Degree of protection IP65

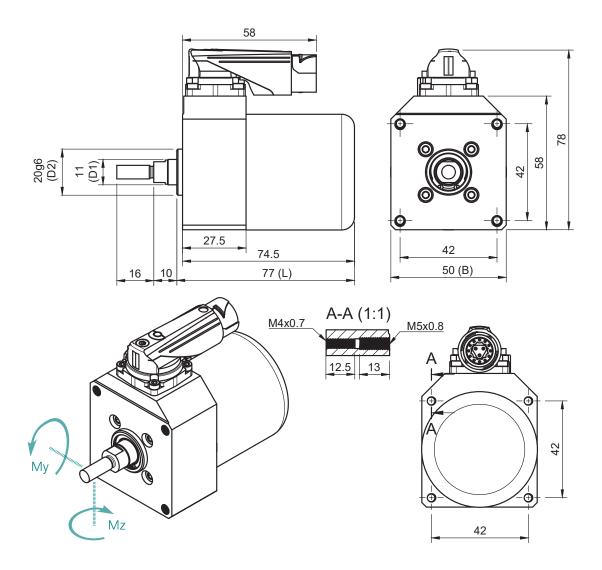
Product configuration

* on request/planned

Document No.: DS-LE-BASE-EN Version 008 | 08.02.2024

Technical data, dimensions Size | Flange width 50

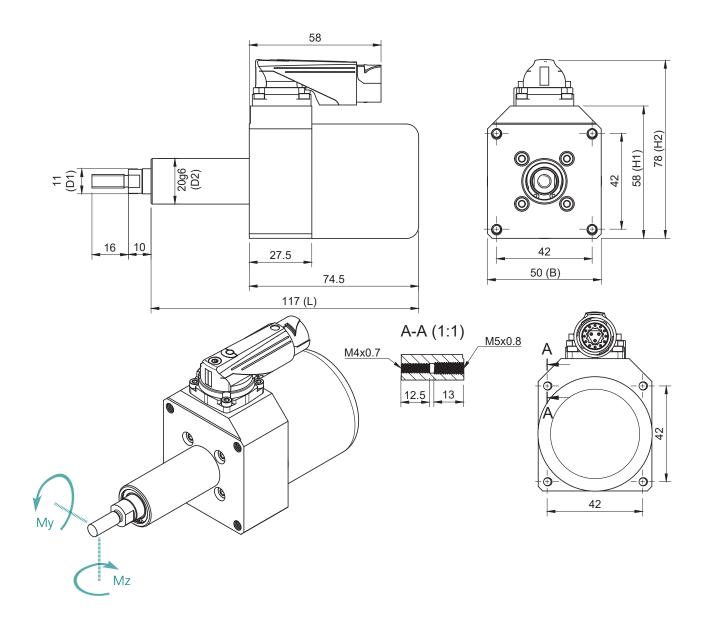
Characteristics (depending on stroke lenght)	045	085	115
Stroke S [mm]	45	85	115
Length L [mm]	77	117	147
Width B [mm]		50	
Height H1 [mm]	58		
Height H2 [mm]	78		
Centering collar D2 [mm]		Ø 20g6 x 2,5	
Diameter plunger D1 [mm]		Ø 11	
Thread on plunger	M6x16 (external thread) others on request		
Width across flats for fixing the plunger [mm]	9		
Weight [g]	540	590	640
My, Mz (Transverse forces on the plunger) [Nm]		< 1	
Coupling / bolting on the flange Hole distance [mm] Mounting options	42 × 42		
(1) from the front into the flange (2) from behind through flange (3) Accessories (in the back of the flange)	4 x M5 Internal thread x Depth 13 mm 4 x M3 (as through hole) 4 x M4 Internal thread x Depth 12 mm		
Tightenning torque (strength class 8.8) M3 [Nm] M4 [Nm] M5 [Nm]	1.3 3.0 6.0		
Hybrid connection (Power & Signal)	M15 Intercontec Itec 915, 15-pole, male angled (rotatable)		
Degree of protection		IP65*	
Materials (of the external components) Plunger Flange Cover Wiper ring (optional)	Stainless steel (1.4305) Aluminium Stainless steel (1.4301 oder 1.4304) HPU (Hydrolysis resistant polyurethane)		


Deviations from standard configuration are possible on request.

SMELA GmbH reserves the right to make changes as a result of technical improvements or new findings.

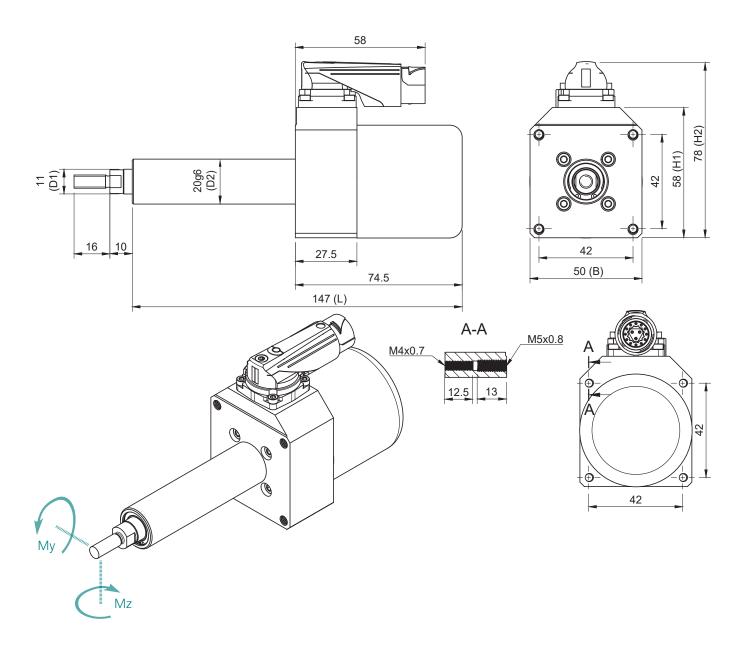
^{*} in test phase

Dimensions, mechanical connection Size | Flange width 50 | Stroke 45 mm



Plan the actuators directly into your design!

Latest data sheets and CAD models are available on request or at: www.smela.com


Dimensions, mechanical connection Size | Flange width 50 | Stroke 85 mm

Dimensions, mechanical connection

Size | Flange width 50 | Stroke 115 mm

Plan the actuators directly into your design!

Latest data sheets and CAD models are available on request or at: www.smela.com

Mechanical performance data Size | Flange width 50

The following maximum achievable performance data are based on the permissible load capacity for the thread pairs used and the motor. Limiting parameters are, among others, the static load capacity of the nut configuration, the permissible sliding speed and the permissible peak and nominal currents of the integrated servomotor (see following page). In practice, due to the reciprocal effects of influences, it may not always be possible to reach the limit values, in particular peak force and maximum speed cannot occur simultaneously. Any increase in the load leads to a reduction in the permissible sliding speeds and vice versa. Please do not hesitate to ask us about the technical feasibility of your motion profiles.

Lead screw	Limit load capacity ¹⁾	Backlash ²⁾	Peak force ³⁾ / Peak current ³⁾	Nom. force ⁴⁾ / Nom. current ⁴⁾	Max. speed ⁵⁾	Max. acceleration ⁶⁾	Positioning time ⁷⁾
configuration	N	mm	N/A	N/A	mm/s	m/s²	ms
High helix							
S100	370		300 / 12	125 / 5	500	25	120
S150	370	approx. ±0.1	200 / 12	83 / 5	750	37.5	85
S240	315	=0.1	125 / 12	52 / 5	1.200	60	65
Trapezoidal thread							
T020	750	approx.	750 / 6	625 / 5	50	2,5	900
T040	750	±0.1	750 / 12	313 / 5	100	5	450

SMELA GmbH reserves the right to make changes as a result of technical improvements or new findings.

Explanatory footnotes:

- Limit load capacity: max. static force and axial load capacity of the internal mechanics; exceeding loads are not permissible and must be absorbed by external mechanics or brakes
- 2) The backlash is wear-dependent, the wear is dependent on load and dynamics
- 3) Maximum permissible force and the corresponding proportional phase current must not be exceed in order to protect the internal mechanics. The max. phase current of the rotary motor I_{max} may furthermore be applied for max. 20 seconds in order not to exceed the internal limit temperature starting from an initial temperature of the actuator of 20°C
- 4) Permissible permanent nom. force / permissible nom. phase current not to exceed the internal limit temperature at an embient temperature of 20 °C Determined by a slow and permanent movement under load (quasi-static method) for the normal case, i.e. the connection of the actuator to a metal body with a thermal contact resistance to air of 1.7 K/W. In case of a worse thermal coupling, limit to the nom. current of the worst case (3 A, see chart on page 9 and footnote 11)
- 5) The max. speed depends on voltage. The applied voltage (phase-phase) may be up to 48 V The characteristics shown refer to a nom. voltage of 24 V (at the actuator);
- 6) During braking (negative acceleration), energy is generated and fed back into the DC link; if the DC link is not capable or regenerative braking, care must be taken to ensure that the DC link capacitance is adequately dimensioned and that an additional braking resitor is used
- 7) Over the stroke of 45 mm (shortest configuration) with a rated voltage of min. 24 V (at the actuator), without load

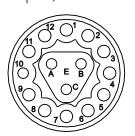
Electrical performance data Size | Flange width 50

	Symbol	Unit			
General					
Nominal voltage ⁸⁾	U _N	V	24 to 48		
Operating temperature ⁹⁾	T _{amb}	°C	+5 to +40		
Internal temperature limit ⁹⁾	T _{int,max}	°C	+90		
Motor feedback Measurement system Interface Resolution (increments quadcounts)			Optical (rotative, singleturn) Incremental, Hall, SSI* 1,024 4,096 higher resolutions*		
Motor parameters	Motor parameters				
Max. permissible speed (equal to no-load speed at 24 V) 8)	$n_{max} = n_0$	min ⁻¹	3,025		
Max. acceleration 6)	α_{max}	rad/s²	16,610		
Max. motor phase current 3)	 max	А	12		
Thermal time constant (winding) 10)	τ _{th,w}	S	20		
Nom. current ⁴⁾ poor thermal connection ¹¹⁾ good thermal connection ¹²⁾	 N,wc N,nc	A A	3 5		
Max. torque (at I _{max})	M _{max}	mNm	750		
Torque constant	k _M	mNm/A	62.5		
Speed constant ¹³⁾	k _n	min ⁻¹ /V	126		
Terminal resistance	R_s	mΩ	585		
Terminal inductance ¹⁴⁾	L _s	μΗ	300		
Electrical time constant ¹⁴⁾	$ au_{ m el}$	ms	0.512		
Number of pole pairs	Z _P	-	7		
Rotor inertia ¹⁵⁾	J	g · cm²	455		

SMELA GmbH reserves the right to make changes as a result of technical improvements or new findings.

Explanatory footnotes:

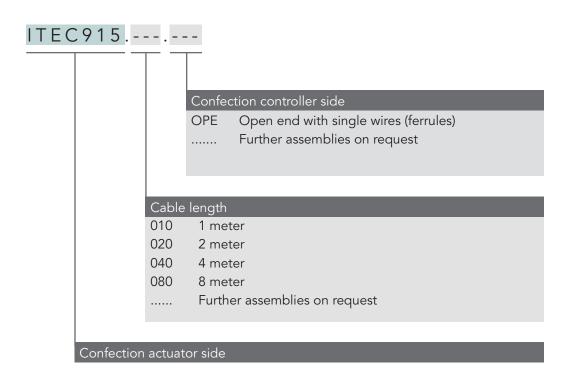
- 8) The applied voltage (phase-phase) can be up to 48 V. The characteristic data refer to a nominal voltage of 24 V (at the actuator); The actual voltage at the actuator can deviate from the DC link voltage and depends, among other things, on the used inverter (voltage utilization) and the length of the connection cable
- 9) Max. permissible ambient temperature; The internal temperature limit must not be exceeded
- 10) The max. phase current I_{max} is to be applied for a duration of max. $T_{th,w}$ in order not to exceed the internal temperature limit of $T_{int,max}$ starting from an initial temperature of the actuator $T_{int} = T_{amb} = 20^{\circ}C$
- 11) With thermal insulation (actuator horizontal in static air at 20°C, 80% humidity, thermal contact resistance to air = 5 K/W)
- 12) When connected to a metal body with a thermal transfer resistance to air of 1.7 K/W
- 13) Related to measured peak voltage, no RMS value, phase to phase
- 14) Phase to phase; without taking into account connecting cables between actuator and drive controller; measured at 1 kHz, 1V rms
- 15) Calculated value without linear unit
- * Planned, on request



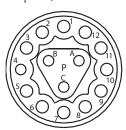
Connection variants

Actuator connection via Intercontec Itec 915

Pin assignment at actuator for sensor configuration S1			
Pin	Function		
1	5 V (Sensor)		
2	GND (Sensor)		
3	Enc A		
4	Enc $\overline{\overline{A}}$		
5	Enc B		
6	Enc B		
7	Enc Z		
8	Enc $\overline{\overline{Z}}$		
9	Hall Sensor 1		
10	Hall Sensor 2		
11	Hall Sensor 3		
12	GND (Sensor)		
А	Motor Phase 1		
В	Motor Phase 2		
С	Motor Phase 3		


Intercontec Itec 915 15-pole, male - actuator side

Deviating assignments for other sensor configurations will follow. Pre-assembled cables suitable for drag chains (see following page) are available on request.


Cables with drag chain capability (PUR) Configuration and order key

Pin and wire assignment for sensor configuration S1				
Pin	Function	Color code		
1	5 V (Sensor)	brown		
2	GND (Sensor)	white		
3	Enc A	green		
4	Enc \overline{A}	yellow		
5	Enc B	grey		
6	Enc B	pink		
7	Enc Z	blue		
8	Enc $\overline{\overline{Z}}$	red		
9	Hall Sensor 1	white/green		
10	Hall Sensor 2	white/yellow		
11	Hall Sensor 3	brown/green		
12	GND (Sensor)	yellow/brown		
А	Motor Phase 1	brown (inner shield)		
В	Motor Phase 2	black (inner shield)		
С	Motor Phase 3	gray (inner shield)		

Intercontec Itec 915 15-pole, female - cable side

Document No.: DS-LE-BASE-EN Version 008 | 08.02.2024

Cables with drag chain capability (PUR) Technical data, properties

Technical data

PUR Jacket
Drag chain capable
Diameter 10.80 ± 0.30 mm

Mechanical load capacity

Bending radius static 40 mm
Bending radius dynamic 80 mm
Recommended Speed \leq 240 m/min
Acceleration \leq 20 m/s²
Cycles \geq 10,000,000
Torsion \pm 30 °/m
Pulling Force \leq 20 N/mm²

Thermal load capacity (min/max)

Static -50 $^{\circ}$ C / +80 $^{\circ}$ C Dynamic -40 $^{\circ}$ C / +80 $^{\circ}$ C

Chemical resistance

Oil resistant EN 50363-10-2

Security features

Flame retardant IEC 60332-1-2 UL/CSA FT1

UL/CSA FI UL VW1

Standard

UL Subject 758 Style 20233 80 °C 300 V

CSA C22.2 N° 210

APPROVALS

WEEE Compliance Yes, in compliance with EU – Directive 2012/19/EU RoHS Directive Yes, in compliance with EU – Directive 2011/65/EU

Halogen Free Yes, according to EN 60754-1

Silicon Free Yes CFC Free Yes

If you have any further questions, please contact our sales partner EVG Elektro-Vertriebs-Gesellschaft Martens GmbH & Co. KG

EVG. Damit aus Ideen Lösungen werden.

EVG Elektro-Vertriebs-Gesellschaft Martens GmbH & Co. KG

Trompeterallee 244-246 | 41189 Mönchengladbach | evg.de +49 2166 5508-0 | info@evg.de

